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Abstract—An integral equation for solving thin conducting

strip problems always involves three singularities, viz, two
charge singularities at the strip edges and the Green’s function
singularity for close proximity of source and field points. This

paper overcomes the singularity convergence problem using

Gauss-Chebyshev quadrature for the edge charges, but more
important Iy by a multipipe model for the Green’s function sin-
gularity, This model applies equally well to both two-dimen-

sional (2-D) and three-dimensional (3-D) problems of metallic
strips embedded in multilayer dielectric substrates. To reduce

the scope, however, this paper analyzes only the quasi-TEM

cases of 2-D thin strip transmission lines in multilayer dielectric
substrates.

I. INTRODUCTION

T HE QUASI-TEM formulation is often used in study-

ing the propagation characteristics of multi-strip

transmission lines in multilayer dielectric media [1]- [10].

The formulation assumes as TEM wave along the trans-

mission line and solves an electrostatic field problem in

the transverse dimensions. Although solvable by the 2-D

finite element method [10], the infinite extent of the static

field over the transverse plane causes the problem of multi-

strip transmission lines to be solved more frequently by a

2-D integral equation and the method of moments [1]-[9].

The integrand of the integral equation, even for a single

strip, involves three singularities, namely, the charge sin-

gularity at the two edges of the strip and the Green’s func-

tion singularity where source and field points coincide. To

better describe the high field or charge density near the

singularities, fine segmentation in the moment method so-

lution is required. This means that the matrix from the

moment method procedure must be quite large and causes

slow convergence in the solution. To improve the numer-

ical efficiency, therefore, one must avoid fine segmenta-

tion around the singularities.

In this paper, the charge singularities at the strip edges
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are avoided by using Gauss-Chebyshev quadrature, since

this quadrature has the correct singular weighting function

to represent the charge density across the strip. The

Green’s function singularity is avoided by constructing

uniform charge pipes centering at the Gauss–Chebyshev

quadrature matching points. As a result, the matrix size

is reduced by an order of magnitude when compared to

the use of pulse basis functions [1], [4].

The multipipe model introduced in this paper is similar

to that introduced by Wheeler [13]. Wheeler assumes true

conductive pipes with mmzum~orm charge distribution

around the pipe due to proximity effects. The nonuniform

charge distribution makes the field calculation difficult.

This paper assumes nonconductive pipes with bound

charges uniformly distributed around the pipe perimeters.

Because of the uniform charge distribution, the field from

each charged pipe is circularly symmetric and is very sim-

ple. This difference means that the pipe radii derived in

this paper are different from those of Wheeler. This will

be observed in Table I.

In the following, the multipipe model is first derived

for a thin strip conductor in free space, for which the rig-

orous conformal mapping solution is known [12]. While

the singularity locations do not change, the charge density

across the strip changes with the inclusion of multilayer

dielectric substrates and the proximity effects of the ad-

jacent strips. It is proved (in Section II-B) that regardless

of this change, the above multipipe model with Gauss–

Chebyshev quadrature still applies with high accuracy and

small matrix size.

11. THE MULTIPIPE MODEL

A. The Multipipe Model of a Single Thin Strip in Free

Space

Through conformal mapping, Wheeler [13] has shown

that the potential V. on a conductive strip of width w, Fig.

1(a), is the same as the potential on a conductive pipe of

radius w/4. With a known surface charge distribution

‘ (C/m2 ) over the strip:

PO
U(x’) =

J1 – (2x’/w)2
(1)
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Fig. 1. (a) Strip conductor in free space. (b) Three-pipe model for the strip
conduqtor of Fig. 1(a).

where Z’. is a constant, the above statement

the potential on the strip can be written as

–Pow
v,(o) = v~= — in (w/4)

46~

means that

(2)

with a unit radius zero potential reference for the line

charge. The subscript ‘‘ 1‘’ is used to distinguish the one-

pipe model. One can also write an integral relating the

voltage V(x) = VOon the strip to the surface charge o(x).

That is

!

w/2

~o = ~(x)l -w/2 <x< w/2 = _w,2 u(x) ~o(~? x’) ~’

(3)

where Go(x, x’) is the 2-D Green’s function in free space:

GO(X>X’) = –
1

—1nlx–.x’l.
2n-e~

(4)

The integral (3) need not be evaluated since the voltage

V(x) = V. is already known from (2).

If this integral were to be evaluated, say numerically,

one would see a problem of three singularities in the in-

tegrand, namely, the singularities of a(x) at \x\ = w/2

and the singularity of the 2-D Green’s function when x =

x’. Such singularities result in slow convergence in the

moment method solution, when (3) is used as an integral

equation.

If one ignores the Green’s function singularity, the

problem of the charge singularity of u(x) can easily be

eliminated by using an Nth order Gauss–Chebyshev quad-

rature in the form

Vo = v~(x) = *j, Go(x., X; ). (5)

When the potential is evaluated at the quadrature points

x m, the use of Gauss-Chebyshev quadrature results in a

logarithmic term which diverges at x~ = x;:

v~= v/l/(xm) =
[

* j, Go(x., X;)

I n+m
1-

()–1
+—

1

lim in Ixm – x~l . (6)
2irEo x.+x;

The quadrature fails because of the Green’s function sin-

gularity. From (2) it is known that VM(X,. ) = P’o, a finite

constant at the quadrature points, Therefore this failure

can be corrected by replacing the singular factor in (6) by

a constant, in (rm ). The value of r~ can be obtained by

equating Vi(0) to V~ (x~ ) for each quadrature point. With

some minor manipulations, one gets

1

(W74) = ; Ixn _ Xml’

N>l, m=l, ”.”, N. (7)

For N = 1, in place of (7), we have

r, = w/4. (8)

Thus (6) is changed to

N

VO = ~N (xm ) = ~~1 ~n G()(xm, xl) + qm GO(O, rn ) (9)

n#m

where q. = q~ = 7rwPo/(2N). Since rm at the right-hand

side is adjusted in (7) to satisfy (9), the above equation

does not diverge, and is exact for the single thin strip in

free space. Thus the Green’s function singularity of (4) in

the integral equation (3) is overcome. This last term of x~

= xi may be called the self term.

Equation (9) represents the potentials V. at matching

points x~; each matching point is surrounded by a pipe of

radius rm with a uniform surface charge density u~. Each

surface charge o~ integrated over the pipe azimuth angle

gives the same line charge of qn (C/m).

Since the voltages at the pipe centers x~ are Vo, the

above interpretation means that the conducting strip is re-

placed by the N pipes of uniform charge density. The re-

placement is exact for the potentials at the centers Xn of

the pipes. A 3-pipe replacement of the thin strip in Fig.

l(a) is illustrated in Fig. 1(b), It is noted that the total

charge of the N pipes equals to the total charge over the

strip.

Given below is Table I tabulating different pipe radii

for different pipe orders (number of pipes) calculated from

(7). It maybe noted that the multipipe method here gives

different radii in Table I compared to those given by

Wheeler [13]. The difference lies on the fact that Wheeler

chooses conductive pipes, but this paper chooses charge

pipes of uniform density. Because of our choice, the pipe

radii in (7) and the potential field in (9) become very sim-

ple.
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TABLE I

NORMALIZED PTPERADii r,n/(w/4) FOR VARIOUS PIPE ORDER N

Pipe Index m

Pipe Order N 1 2 3 4 5

1 1.00

2 0.3536 0.3536

3 0.1667 0.3333 0,1667

4 0.0956 0.2310 0,2310 0.0957

5 0.0618 0.1618 0.2000 0,1618 0.0618

The pipe radii decrease towards the edge since the

charge density increases towards the edge. This is a direct

result of the voltage matching condition applied in (9).

From the derivation process of the multipipe model, it

should also be noticed that the pipe radii are solely deter-

mined by the strip width w and the number of pipes N.

The pipe radii do not change for a conducting strip in dif-

ferent coupling situations. It is the pipe weighting coef-

ficients, like q. in (9), that will be adjusted using the mo-

ment method to take into account all the mutual coupling.

The moment method using the multipipe model will be

described in the next subsection.

B. The Multipipe Model for a Thin Strip in a Layered

Dielectric

This section proves that the multipipe model for a strip

in free space can still be used for a general strip embedded

in a layered dielectric with or without ground planes,

Similar to (3), the voltage V(x) = V. on the strip in a

layered dielectric and the surface charge density a (.x) are

related through the following integral:

J

w/2

~. = J7(x)[-,v/2 <x<,L,/2 = _w,2 o(x’) G(x> x’) &’

(lo)

where the charge distribution of o (x’) on the strip is dif-

ferent from (1) in free space due to the presence of layered

dielectric. It is generally represented as follows:

P(x’)
O(x’) = (11)

J1 – (2x’/w)2

where P (x’) is an unknown factor in the charge density

on the strip and was equal to a constant P. for an isolated

strip in free space. The Green’s function G (x, x’) is also

different from the free space Green’s function (4). Using

the image technique (real images for a homogeneous me-

dium with a ground plane, or complex images for a mul-

tilayer dielectric medium [11]; real images may be con-

sidered as a special case of complex images), the Green’s

function can be generally written in the following form:

G(x, X’) = (&rce(x, X ‘) + G,~,~.(x, X’) (12)

where

Gsource =~lnlx–x’l (13)

represents the source term, i.e., the potential of a line

charge in a homogeneous medium of perrnittivity ~, and

Gi~a~~ = ~~~ailn J(x - .x’)2 + b; (14)

represents the image terms which take into account all the

dielectric layers and ground planes. The images are lo-

cated in the same homogeneous medium of permittivity

e, But they are separated from the original line source by

a distance h, (real or complex) in y-dimension. In all the

examples tested in this paper, the number of complex im-

ages, N,~,~,, is taken as 5.
The concept of complex images has been used before

in solving dipole and line source radiation problems in a

dielectric half space [18]. For the electrostatic field com-

putation in multilayered media, we derived a complex im-

age expression by numerically processing a known spec-

tral function of the layered media [11]. The complex

image technique of [11] does not have any limitation on

the number of dielectric layers, so long as the spectral

function is known. The spectral functions of the dielectric

structure shown in Fig. 2, having three optional dielectric

layers and two optional ground planes, are tabulated in

the Appendix.

Substituting (12) into (10), and evaluating the voltage

at the Gauss–Chebyshev quadrature points x~, we can re-

write (10) as follows:

!
w/2

v~ = V(xm) = c (x ‘ ) G~OU~C~(x~, x ‘) k’
–w/2

i

w/2

+ CT(X’) G,mage(xm,X’) d’
–w/2

Wmrce(xm ) + ‘unage(%l ).=V (15)

Since the images are always away from the original strip

by a distance bi # O, the integrand of the second term in

(15) has no Green’s function singularity. Thus Gauss-

Chebyshev quadrature integration applies directly even

when x’ = x~, i.e. :

The integrand of the first term in (15) has a Green’s func-

tion singularity at x’ = x~. To overcome this singularity,

.Ou,C,(x~) is rewritten as follows:the voltage V

I
w/2

v .sowce(xm ) =

P(x’) G
So”me(%, x’) ~ ‘

-w/2 J1 – (2x’/w)2

!

“2 P(x’) – P(xm) G.

-w/2 41 – (2x’/w)2
SO”rce(xm,x ‘) ~’

!

w/2
1

+ P(x. )
-w/2 J1 – (2x’/w)2

“G ,Oume(xm,x ‘) dx ‘

= z~+ 12, (17)
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Fig. 2. Multiconductor transmission lines in a multilayer dielectric.

In the integrand of the first integral of (17), the factor

P (.x’) – P (xm ) has a first-order zero at x’ – x~. With

,OUrCedefined as a logarithmic function in (13), it can beG

easily shown by L’Hopital’s rule that the integrand is re-

duced to zero at x’ = x~. Therefore by the Gauss-Che-

byshev quadrature, we have

z, =

=

~ j, [p(.x;) - P(xm)] G,ource(x,n,X;)

n#m

– &N ,ljm,, [P(xj) – P(x,. )] in lx,. –
m“

Ar

XlI

n+m

The second integral of (17) still has the Green’s function

singularity. But it is simply the solution to (3) for the strip

in free space, multiplied by the charge distribution P (xm )

at x~, Hence,

!
w/2

z~ = P(xm)
1

G,Ou,ce(xm,x ‘) dx ‘
-w/2 J1 – (2x’/w)*

[

N

v p (-%I ) ~~1 Gso.rce(xrn, %’I ) + Gsource(O, r~ )
= 2N 1

(19)

Adding the two integrals Z1 and Z2 yields the following

simple result for V,OUJx~ )

[

~source(xrn ) = ~ ~$, P(x; ) Gso.ree(xrn, x; )

n#m

1+p(Xm) Gsource(~m,XL) .
(20)

Substituting (16) and (20) into (15), and using the defi-

nitions of (13) and (14), the voltage at the quadrature

points x~ can be written as follows

N

V. = V(x~) = ~~, q. Gw., rn=l,2, ””” N(21)

where q, = TwPI (x;) /2N is the unknown to be solved,

and

[

Gso.rce(xrn,x;) + Guuage(xm,x~), m+n
G.. =

G,OurC.(O,r~) + Gimage(xrn, x~), m=n.

(22)

The pipe radii r~ used in (22) are the same as given by

(7) and Table 1, Obviously, the unknown charge coeffi-

cients q. can be solved from the matrix equation (21).

C. lle Multipipe Model for Solving the Capacitance

Matrix of Multiple Strips

The above multipipe model can be used for multiple

thin strips embedded in a layered dielectric. The first step

is to replace each strip by a given number of uniformly

charged pipes, Ni, where i ranges from 1 to NSt~,PS,the

number of strips being modeled. The second step is to

match the potential on all the strips, at the N pipe-centers

on each strip, This yields a matrix equation from which

the unknown charge coefficients q, can be solved,

With the matrix equation solved, the mutual capaci-

tance C,J between the i th strip and the jth strip can be

calculated using the following formula, when the j th strip
has the potential Vj and the rest of the strips have zero

potential:

j, qm
Cy=y, i,j= 1,2, “QQN~triP~. (23)

1

It can be easily shown that the above capacitance is vari-

ational with respect to the charge distribution.

NUMERICAL EXAMPLES

Based on the multipipe technique and the complex im-

age technique, we have developed a general program for

calculating the capacitance and inductance matrices of

transmission line structures shown in Fig. 2. Given below

are six examples tested, i.e., a single microstrip line, two

tightly coupled microstrip lines, two strips between two

ground planes, “three strips in three dielectric layers be-

tween two ground planes, six strips on a dielectric sub-

strate above a ground plane, and a broadside coupled sus-

pended stripline.

Example 1: A Single Microstrip Line

Fig. 3 shows a single microstrip of zero thickness on a

dielectric substrate above a ground plane. The character-

istic impedance Z. of the microstrip is Z. = 1 / (VO @ ),

where V. is the speed of light in free space, C is the ca-

pacitance of the microstrip and Co is the free space ca-

pacitance of the microstrip. For various w/h ratios, Table

II compares our results for Z. with those of [4], [5], Our

results were obtained by using 3 pipes, i.e., the matrix

size is 3 x 3, except for the case of w/h = 10 where 8

pipes were required for the given accuracy. In [4], the

matrix size was 42 X 42.

To show the convergence of our results, Fig. 4 plots

the percentage difference in the microstrip characteristic

impedance Z. between our results and those of [15], ver-

sus the number of pipes N. In our calculations, the com-

puter time for the 8-pipe model is less than 6 s on a CSS-

386 personal computer. It is seen in Fig. 4 that when the
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co w

Fig. 3. Single microstrip line.

TABLE H

CHARACTERISTICIMPEDANCEZOINOHMS FORA SINGLE MICROSTRIP LINE (FIG. 3)

w/h

0.4
0.7
1.0
2.0

4.0

10.0

e, = 6.0 C, = 9.8

Our
Results

90.40
72.78
61.88
42.49
26.46

12.64

Reference
[4]

% Difference
from [4]

Reference
[5]

Our
Results

Reference
[15]

% Difference
from [15]

92.28
’73.96
62.81

43.00
26.97

13.00

–2.08
–1.62
–1.50
–1.20

–1.93

–2.84

89.91
72.00
60.97
41.51

26.03

12.49

72.35
58.36
49.37

33.59
20.94

10.00

72.37
58.39
49.37
33.60

20.92

10.01

–0.03
–0.05

0.00

–0.01
0.09

0.10

.

c,=9.8

/● -***w h=h.o
❑ n=.. W/h=lo.o

. . . . ,.

0

-1.0 ~
6

Number of Pipes

Fig. 4. Convergence of the multi-pipe model for a single microstrip line.

number of pipes is increased from 2 to 8, the percentage

difference converges, by 3 pipes for w/h = 4 and by 7

pipes for w/fi = 10.

Example 2: Tightly Coupled Microstrip Lines

Fig. 5 shows two coupled microstrips of zero thickness

on a dielectric substrate above a ground plane. For var-

ious s/h ratios, Table III compares our results for e~fi,~v~n

and .s~f,~~~with those of [15]. Our results were obtained

by using 5 pipes on each strip, i.e., the matrix size is 10

X 10. It is emphasized again that the pipe radii do not

change in this tightly coupled situation. It is the pipe

weighting coefficients, i.e., the amount of charge on each

pipe, that were adjusted using the moment method to take
into account the tight coupling.

Example 3: Two Strips Between Two Ground Planes

Fig. 6 shows two infinitely thin strips between two

ground planes separated by distance h. The left hand strip

is conductor 1, the right hand strip is conductor 2. Table

co w SW

h

Fig. 5. Two tightly coupled mlcrostrip lines.

IV compares our results of capacitance and inductance

matrices with those of [4]. It can be seen that there are

smaller relative differences between self capacitances than

between mutual capacitances. In our calculations, 3 pipes

were used on each strip, and the overall matrix size is 6

X 6. In [4], the matrix size was 92 X 92.

Example 4: Three Strips in Three Different Dielectrics

Fig. 7 shows three infinitely thin strips embedded in a

three-layered dielectric between two ground planes. The

left hand strip is conductor 1, the right hand strip is con-

ductor 2, and the center strip is conductor 3. Table V

compares our results of capacitance and inductance ma-

trices with those of [4]. In our calculations, 3 pipes were

used on each strip, and the overall matrix size is 9 X 9.

In [4], the matrix size was 170 X 170. Again large per-

centage differences show up in the mutual elements with

small values.

Example 5: Six Strips on a Dielectric Substrate Above a

Ground Plane

Fig. 8 shows a six-strip transmission line geomet~. The

strips are numbered from left to right as 1 to 6. Table VI

compares our capacitance matrix results with those of [7],

[10]. We specifically checked those capacitances in which
the moment method of [7] and the finite element method

of [10] give significant differences. It turned out that our

results consistently agree with those given by [7]. It is

concluded that the HOABC-FEM (high order approxi-

mate boundary conditions in finite element method) of

[10] gave errors in this example. In our calculations, 3
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TABLE III
EFFECTIVE PERMITTWITY (eeff ) FOR EVEN AND ODD MODES OF Two TIGHTLY COUPLED MICROSTRIP LINES,

C, = 9.8, w/h = 1.0 (FIG. 5)

Even Mode Odd Mode

Our Reference % Difference Our Reference % Difference
s/h Results [15] from [15] Results [15] from [15]

0.05 7.047 7.054 –0.099 5.539 5.542 –0.054
0.1 7.064 7.07 I –0.099 5.565 5.571 –0.108
0.2 7.093 7.100 –0.099 5.607 5.615 –o. 143
0.4 7.132 7.140 –0.112 5.679 5.687
0.6 7.154

–0.141
7.161 –0.097 5.808 5.817 –0.155

1.0 7.125 7.128 –0.042 5.923 5.931 –0.136
2.0 7.011 7.001 0.114 6.110 6.111 –0.016

—

:

9.5E*

~ (length in roils)
5

————
2

1.0 4* — —0.s—

Fig. 6. Two strips between two ground planes.

TABLE IV
COMPARISON OF RESULTS FOR Two STRIPS BETWEEN Two GROUND PLANES (FIG. 6),

(CAPACITANCE IN pF/m, INDUCTANCE IN nH/m)

3 (roils) 5 (roils)

Our Reference % Our Reference %
h Results pl] Difference Results [4] Difference

c,, 531.9 533.6 –0.32 481.2 485.2 –0.83
C,2 – 10.096 –9.250 9.15 –1.899 –1.798 5.62
C22 778.9 783.4 –0.58 751.1 755.7 –0.61
L,, 198.7 203,3 –2.32 219.8 224.6 –2.18
L,2 2.568 2.401 6.96 5.473 5.345 2.39
L22 135.7 139.0 –2.43 140.9 144.2 –2.34

t
0.9

I I 6.0 & 0.2
—

I I

(kngth in roils) I ! 0.3
I 9.5 Eo 0.45

;1
I II I— I I 0.2 iII
I I 4.2 & o-3511 ~1

l! ,1 I *
-.8 -.3 -.2 .2 .3 .8

Fig. 7. Three strips in three different dielectric layers encased by two

ground planes.

TABLE V

COMPARISON OF RESULTS FOR THREE STRIPSIN A THREE-LAYERED DIELECTRIC (FIG. 7);
(CAPACITANCE IN pF/m, INDUCTANCE IN nH/m)

c,, L,,
——

Our Reference % Our Reference %

i j Results [4] Difference Results [4] Difference

1 1 511.8 490.0 4.49 139.9 145.6 –4.07

1 2 –0.5916 -0.5737 3.12 5.912 5.630 5.01

1 3 –69.75 –64.57 8.02 28.62 28.44 0.63

22 257.2 245.9 4.50 215.7 224.0 –3.85

2 3 –66.56 –61.38 8.44 58.14 57.62 0.90

3 3 297.8 286.5 3.94 295.3 306.5 –3.79
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Ws” G

8

Fig. 8. Six strips on a dielectric substrate above a ground plane.

TABLE VI

COMPARISON OF RESULTS FORA SIX-STRIP TRANSMISSION LINE STRUCTURE (FIG. 8),
(CAPACITANCE IN pF/m)

c,,

%
Our Results Reference [7] Difference Reference [ 10]

i j (MoM) (MoM) from [7] (FEM)

1

1

1

1
1
1

2
3

3
4
6

1

2

3
4

5
6

5
3
6
5
2

67.0
–28.0

–5.47

–2.05

–0.964
–0.647

–1.71
79.6

–2.05
–25.7

–0.964

66.8

–27.9

–5.49

–2.08

–0.999
–0.704
–1.73

79.4
–2.08

–25.6
–0.999

–0.30

0.36

–0.37

–1.50
–3.63

–8.81
–1.17

0.25
–1.46

0.39
–3.63

66.7

–29.3

–5.65
–1.92
–0.792

–0.445
–1.55

81.2
–1.92

–26.9
–0.792

1b
Fig. 9. Broadside coupled suspended stripline.

TABLE VII

COMPARISON OF THE EFFECTIVE DIELECTRIC CONSTANTS .QORBROADSIDE COUPLED SUSPENDED STRIPLINES,
d/b = 0.3 (Fig. 9)

Odd Mode Even Mode

Our Results ‘Reference [16] % Our Results Reference [16] %
w/b c/w + 03 c/w = 40 Difference c/w + w c/w = 40 Difference

0.1 1.300 1.303 –0.23 1.713 1.701 0.71
0.2 1.253 1.255 –0.16 1.744 1.732 0.69
0.4 1.197 1.198 –0.08 1.779 1.769
0.8

0.56
1.136 1.138 –0.18 1.811 1.803

1.5
0.44

1.089 1.088 0.09 1.842 1.825 0.93

pipes were used on each strip, and the overall matrix size

is 18 x 18. The terms with the largest difference from [7]

are again those mutual capacitances with the smallest val-

ues and thus are expected to have the largest differences.

Example 6: Broadside Coupled Suspended Strip lines

Fig. 9 shows a broadside coupled suspended stripline.

In this example, we first calculate the capacitance and in-

ductance matrices, [C] and [L], and then find the eigen-

values of the matrix [K]. These two eigenvalues corre-

spond to the odd mode and even mode propagation

constants, respectively. Table VII compares our results

with those of [16] for the case d/b = 0.3. In our calcu-

lations, 5 pipes were used on each strip, and the overall

matrix size is 10 X 10. In [16], there are side walls with

c/w = 40. In our calculations we took c/w + w. The

difference in the odd mode is always less than 0.25 %.

This is due to the fact that the odd mode cannot see the

far walls of [16] and therefore the results will compare

well. For the even mode the error is still always less than

1%, but it is consistently positive, indicating that there

might be some effect of the walls in the results of [16].
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Source rind field

points

in the same

dielectric layer i

Source and field

points in adjacent

dielectric layers i

and j

Source and field

points separated

by a dielectric

layer, i.e., i = 1

andj =3

Reflection

coefficients used

in F(y) in the

three rows above

TABLE VIII
SPECTRAL FUNCI’JON F(T) FOR DIFFERENT SOURCEAND FIELD LOCATIONS

(1 ‘r.i)(l ‘~fi)eql’-”l
F(y) =

1 – r~irfie-%[y ‘y’ 1“—

im][ i=z i=3

-2yy’
T*I - e

-~’ -h,) -2yiy’-h, -i2)

r=2= RF r=~= R4e

Rle
-Mhl-Y)

rfl = -~h1+h2-y) -~h, +h=+h, -y)

rn = R3e rfl=e

(1 ‘r.i)(l +rij)(l _rfj~-31yq-Y’lF(y) =
(1 + rfirtie -2YlY-Yy _r.e-2m-y’l

) (
r. + rfie -’alY-Yq

St )

i=l j-2 i=2 j=3

r~l = e -27Y” -2&-hl)

rsz = RF

-~h, +h2-y)

rfl = R3e Y12 = hl
-~hl +h2 +$ ‘y)

9 rn=e 9 yz=h1+h2

“(Y) = –
(1 -e-tiy’)(l +rl,)(l +rn)(l -e-M’l+%+’’’-yyg-yg

[( 1 + r~~~e! -a? --e-hh’(r12+r23e -271+=W3+W-7-’-a’(wn+’-a’?l

-2$13

( )
-&hl

-WJz + rl~

(

-%

R3= ~2L3e , R,= ’32+ ’21e
‘3f121 + e )

1 + r~~e-ah’ ( )1 + r3g21e-ah +r@-%21+w-7

&j - Ei
rg=— i,j = 1,2,3.

&; +&i ‘

V. CONCLUSION

In this paper, a multipipe model is presented for cal-

culating the capacitance and inductance matrices of mul-

tistrip transmission lines in multilayer dielectric media.

The multipipe model is derived from the Gauss-Che-
byshev quadrature integration. It has been shown that for

solving multi-strip transmission line problems, the matrix

size using the multipipe model is an order of magnitude

smaller than that using pulse basis functions in the mo-

ment method [1], [4]. Isolated and tightly coupled trans-

mission lines printed on single layer substrates or embed-

ded in multilayer dielectrics are tested. In all the

examples, our results are in good agreement with pub-

lished data,

The multipipe model is not limited to electrostatic

problems. It can also be used in the full wave analyses of

3-D microwave integrated circuits [14], [17]. However,

the multipipe model is efficient only for solving thin con-
ducting strip problems. For transmission line conduction

of arbitra~ cross section, the efficiency may deteriorate.

APPENDIX

The spectral function F(Y, y, y’) k derived for each

situation in Table VIII. Only six situations of the source
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and field locations are listed in Table VIII. For the other

three cases, i.e., (i = 2,j = 1), (i = 3, j = 2) and (i =

3, j = 1), one can use the same spatial Green’s functions

asthecasesof(i = l,j =2), (i=2, j=3)and (i= 1,

j = 3) respectively, by using reciprocity.
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