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A Multipipe Model of General Strip Transmission
Lines for Rapid Convergence of Integral Equation
Singularities
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Abstract—An integral equation for solving thin conducting
strip problems always involves three singularities, viz, two
charge singularities at the strip edges and the Green’s function
singularity for close proximity of source and field points. This
paper overcomes the singularity convergence problem using
Gauss—-Chebyshev quadrature for the edge charges, but more
importantly by a multipipe model for the Green’s function sin-
gularity. This model applies equally well to both two-dimen-
sional (2-D) and three-dimensional (3-D) problems of metallic
strips embedded in multilayer dielectric substrates. To reduce
the scope, however, this paper analyzes only the quasi-TEM
cases of 2-D thin strip transmission lines in multilayer dielectric
substrates.

I. INTRODUCTION

HE QUASI-TEM formulation is often used in study-
ing the propagation characteristics of multi-strip
transmission lines in multilayer dielectric media [1]-[10].
The formulation assumes as TEM wave along the trans-
mission line and solves an electrostatic field problem in
the transverse dimensions. Although solvable by the 2-D
finite element method [10], the infinite extent of the static
field over the transverse plane causes the problem of multi-
strip transmission lines to be solved more frequently by a
2-D integral equation and the method of moments [1]-[9].
The integrand of the integral equation, even for a single
strip, involves three singularities, namely, the charge sin-
gularity at the two edges of the strip and the Green’s func-
tion singularity where source and field points coincide. To
better describe the high field or charge density near the
singularities, fine segmentation in the moment method so-
lution is required. This means that the matrix from the
moment method procedure must be quite large and causes
slow convergence in the solution. To improve the numer-
ical efficiency, therefore, one must avoid fine segmenta-
tion around the singularities.
In this paper, the charge singularities at the strip edges
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are avoided by using Gauss—Chebyshev quadrature, since
this quadrature has the correct singular weighting function
to represent the charge density across the strip. The
Green’s function singularity is avoided by constructing
uniform charge pipes centering at the Gauss-Chebyshev
quadrature matching points. As a result, the matrix size
is reduced by an order of magnitude when compared to
the use of pulse basis functions [1], [4].

The multipipe model introduced in this paper is similar
to that introduced by Wheeler [13]. Wheeler assumes true
conductive pipes with nonuniform charge distribution
around the pipe due to proximity effects. The nonuniform
charge distribution makes the field calculation difficult.
This paper assumes nonconductive pipes with bound
charges uniformly distributed around the pipe perimeters.
Because of the uniform charge distribution, the field from
each charged pipe is circularly symmetric and is very sim-
ple. This difference means that the pipe radii derived in
this paper are different from those of Wheeler. This will
be observed in Table 1.

In the following, the multipipe model is first derived
for a thin strip conductor in free space, for which the rig-
orous conformal mapping solution is known [12]. While
the singularity locations do not change, the charge density
across the strip changes with the inclusion of multilayer
dielectric substrates and the proximity effects of the ad-
jacent strips. It is proved (in Section II-B) that regardless
of this change, the above multipipe model with Gauss-
Chebyshev quadrature still applies with high accuracy and

- small matrix size.

II. THE MuLTIPIPE MODEL

A. The Multipipe Model of a Single Thin Strip in Free
Space

Through conformal mapping, Wheeler [13] has shown
that the potential V; on a conductive strip of width w, Fig.
1(a), is the same as the potential on a conductive pipe of
radius w/4. With a known surface charge distribution

* (C/m?) over the strip:
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Fig. 1. (a) Strip conductor in free space. (b) Three-pipe model for the strip
conductor of Fig. 1(a).

where Py is a constant, the above statement means that
the potential on the strip can be written as

—PO
460

w
Vi) =V, = In (w/4) @
with a unit radius zero potential reference for the line
charge. The subscript *“1°’ is used to distinguish the one-
pipe model. One can also write an integral relating the
voltage V(x) = V; on the strip to the surface charge o (x).
That is
w/2
Vo = V(x)|—w/2<x<w/2 = S /2 o (x) Golx, x") dx'

—-w

(3)
where Gy(x, x') is the 2-D Green’s function in free space:
Golx, x') = —Lln lx — x'|. (C))

27eq

The integral (3) need not be evaluated since the voltage
V(x) = V,is already known from (2).

If this integral were to be evaluated, say numerically,
one would see a problem of three singularities in the in-
tegrand, namely, the singularities of o(x) at |x| = w/2
and the singularity of the 2-D Green’s function when x =
x'. Such singularities result in slow convergence in the
moment method solution, when (3) is used as an integral
equation.

If one ignores the Green’s function singularity, the
problem of the charge singularity of ¢(x) can easily be
eliminated by using an Nth order Gauss—-Chebyshev quad-
rature in the form

WPy
Vo=Wu@ = -2 B Goltm, 1), )

2N »n=

When the potential is evaluated at the quadrature points
X,., the use of Gauss—Chebyshev quadrature results in a

logarithmic term which diverges at x,, = x,:

N
TwP
Vo = Valam) = 50 | 2 Goloms 33)
n#m
-1 '
+ < > lim In |x, — x,’,l]. ©)
2weg ) xm—xi

The quadrature fails because of the Green’s function sin-
gularity. From (2) it is known that Vy(x,,) = V,, a finite
constant at the quadrature points. Therefore this failure
can be corrected by replacing the singular factor in (6) by

‘a constant, In (r,,). The value of r, can be obtained by

equating V,(0) to Vy(x,,) for each quadrature point. With
some minor manipulations, one gets

Vo 1
W/H N x|
=i | w/4)
n¥m
N>1, m=1-+-+,N (D
For N = 1, in place of (7), we have
rn=w/d. ®

Thus (6) is changed to

N
Vo= Vy@n) = 2 quGoln %) + G0, 1) )

n+Fm

where g, = q,, = ®wPy/(2N). Since r,, at the right-hand
side is adjusted in (7) to satisfy (9), the above equation
does not diverge, and is exact for the single thin strip in
free space. Thus the Green’s function singularity of (4) in
the integral equation (3) is overcome. This last term of x,,
= x, may be called the self term.

Equation (9) represents the potentials V; at matching

points x,,; each matching point is surrounded by a pipe of
radius r,, with a uniform surface charge density o,. Each
surface charge g,, integrated over the pipe azimuth angle
gives the same line charge of g, (C/m).
" Since the voltages at the pipe centers x,, are V;, the
above interpretation means that the conducting strip is re-
placed by the N pipes of uniform charge density. The re-
placement is exact for the potentials at the centers x,, of
the pipes. A 3-pipe replacement of the thin strip in Fig.
1(a) is illustrated in Fig. 1(b). It is noted that the total
charge of the N pipes equals to the total charge over the
strip.

Given below is Table I tabulating different pipe radii
for different pipe orders (number of pipes) calculated from
(7). It may be noted that the multipipe method here gives
different radii in Table I compared to those given by
Wheeler [13]. The difference lies on the fact that Wheeler
chooses conductive pipes, but this paper chooses charge
pipes of uniform density. Because of our choice, the pipe
radii in (7) and the potential field in (9) become very sim-
ple.
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TABLE I
NoORMALIZED P1PE RaDit 7, /(w/4) FOR VARIOUS PIPE ORDER N

Pipe Index m

Pipe Order N 1 2 3 4 5
1 1.00
2 0.3536 0.3536
3 0.1667 0.3333 0.1667
4 0.0956 0.2310 0.2310 0.0957
5 0.0618 0.1618 0.2000 0.1618 0.0618

The pipe radii decrease towards the edge since the
charge density increases towards the edge. This is a direct
result of the voltage matching condition applied in (9).

From the derivation process of the multipipe model, it
should also be noticed that the pipe radii are solely deter-
mined by the strip width w and the number of pipes N.
The pipe radii do not change for a conducting strip in dif-
ferent coupling situations. It is the pipe weighting coef-
ficients, like g, in (9), that will be adjusted using the mo-
ment method to take into account all the mutual coupling.
The moment method using the multipipe model will be
described in the next subsection.

B. The Multipipe Model for a Thin Strip in a Layered
Dielectric

This section proves that the multipipe model for a strip
in free space can still be used for a general strip embedded
in a layered dielectric with or without ground planes.

Similar to (3), the voltage V(x) = V, on the strip in a
layered dielectric and the surface charge density ¢ (x) are
related through the following integral:

w/2
VO = V(x)l—w/2<x<w/2 = S /2 O'(X,) G(X, x,) dx’

(10)

where the charge distribution of ¢ (x') on the strip is dif-
ferent from (1) in free space due to the presence of layered
dielectric. It is generally represented as follows:

o(x’) = __Fe)
V1 — Qx'/w)?

where P(x') is an unknown factor in the charge density
on the strip and was equal to a constant P, for an isolated
strip in free space. The Green’s function G(x, x") is also
different from the free space Green’s function (4). Using
the image technique (real images for a homogeneous me-
dium with a ground plane, or complex images for a mul-
tilayer dielectric medium [11]; real images may be con-
sidered as a special case of complex images), the Green’s
function can be generally written in the following form:

an

Gx,x') = Gsource(x’ x") + Glmage(x, x") (12)
where
-1
Gooure = 57— In lx - x,l (13)
2we

represents the source term, i.e., the potential of a line
charge in a homogeneous medium of permittivity €, and
Nlmage

;} g; In m

-1
Gimage = Zr_g , (14)
represents the image terms which take into account all the
dielectric layers and ground planes. The images ate lo-
cated in the same homogeneous medium of permittivity
€. But they are separated from the original line source by
a distance b, (real or complex) in y-dimension. In all the
examples tested in this paper, the number of complex im-
ages, Nymage, is taken as 5.

The concept of complex images has been used before
in solving dipole and line source radiation problems in a
dielectric half space [18]. For the electrostatic field com-
putation in multilayered media, we derived a complex im-
age expression by numerically processing a known spec-
tral function of the layered media [11]. The complex
image technique of [11] does not have any limitation on
the number of dielectric layers, so long as the spectral
function is known. The spectral functions of the dielectric
structure shown in Fig. 2, having three optional dielectric
layers and two optional ground planes, are tabulated in
the Appendix.

Substituting (12) into (10), and evaluating the voltage
at the Gauss—Chebyshev quadrature points x,,, we can re-

~ write (10) as follows:

w/2

Vo = V(x,) = g ; 0(x") Gyource(Xm, X') dx’
2

w/2
+ S / G(XI) Glmage(xms xl) dx’
-w/2
= Vsource(xm) + Vlmage(xm)- (15)

Since the images are always away from the original strip
by a distance b; # 0, the integrand of the second term in
(15) has no Green’s function singularity. Thus Gauss—
Chebyshev quadrature integration applies directly even
when x' = x,, 1.e.:

N
™
Vimsge(tn) = 50 2 P(51) Ginage> %;)- (16)

The integrand of the first term in (15) has a Green’s func-
tion singularity at x’ = x,,. To.overcome this singularity,
the voltage V.ouree(X,,) 18 rewritten as follows:

SW/Z P(x,)
-w/2 N1 = (2x'/w)?
"2 P’y — P(x,)
——’—-LGsource ms ") dx’
S~w/z V1 — @Qx'/w)? G X7)
w/2 1
ZO0Y [ —
* P —w/2 A1 = Qx'/w)?
’ GSOUI‘CC xm5 x,) dx,

=I] +12.

VSOUI’CC(xm) = Gsource(xm9 X ') dx,

]

a7
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Fig. 2. Multiconductor transmission lines in a multilayer dielectric.

In the integrand of the first integral of (17), the factor
P(x') — P(x,) has a first-order zero at x’ — x,,. With
Gource defined as a logarithmic function in (13), it can be
easily shown by L’Hopital’s rule that the integrand is re-
duced to zero at x' = x,,. Therefore by the Gauss-Che-
byshev quadrature we have

I 2 [P(x)) —

2N n=1

n#+Em

P(Xm )] Gsource Xms x;l)

w
- ZJVx,},l-Elln [P(xn) - P(xm)] In I-xm - xnl

W
N gl [PG) = P )] Grources 37). (18)

n¥m

The second integral of (17) still has the Green’s function
singularity. But it is simply the solution to (3) for the strip
in free space, multiplied by the charge distribution P (x,,)
at x,,. Hence,

w/2 1

12 = P(xm) S—w/2 /—1 — (2x'/w)2

Eﬁp(xm)

’ r
GSOUFCC xm’ X ) dx

N
;1 GSOUTCC -xm’ x”l) + GSOUFCC(O’ rm)
nem
(19)

Adding the two integrals /; and /I, yields the following
simple result for V ,..(x,,)

Viourcelim) = ’;N[ 3 P Grourcelms %3

n¢m

+ P(xm) GSOUI‘CC(xm? x;n) M
(20
Substituting (16) and (20) into (15), and using the defi-
nitions of (13) and (14), the voltage at the quadrature
points x,, can be written as follows
N
Vo= V@) = 2 ¢uGpr m=12--N QD
where g, = wwP,(x}) /2N is the unknown to be solved,
and

G = {Gsource Xms Xn) + meage(xma Xn)s m#*n
mn T ,
Gsource(oa rm) + Gimage(xms xm)’ m = n.
(22)

The pipe radii r,, used in (22) are the same as given by
(7) and Table I. Obviously, the unknown charge coeffi-
cients g, can be solved from the matrix equation (21).

C. The Multipipe Model for Solving the Capacitance
Matrix of Multiple Strips

The above multipipe model can be used for multiple
thin strips embedded in a layered dielectric. The first step
is to replace each strip by a given number of uniformly
charged pipes, N;, where i ranges from 1 to Ny, the
number of strips being modeled. The second step is to
match the potential on all the strips, at the N pipe-centers
on each strip. This yields a matrix equation from which
the unknown charge coefficients g, can be solved.

With the matrix equation solved, the mutual capaci-
tance C, between the ith strip and the jth strip can be
calculated using the following formula, when the jth strip
has the potential V; and the rest of the strips have zero
potential:

N
I, j=1,2, "+ Ngips. (23)
It can be easily shown that the above capacitance is vari-
ational with respect to the charge distribution.

NumericaL ExXAMPLES

Based on the multipipe technique and the complex im-
age technique, we have developed a general program for
calculating the capacitance and inductance matrices of
transmission line structures shown in Fig. 2. Given below
are six examples tested, i.e., a single microstrip line, two
tightly coupled microstrip lines, two strips between two
ground planes, three strips in three dielectric layers be-
tween two ground planes, six strips on a dielectric sub-
strate above a ground plane, and a broadside coupled sus-
pended stripline.

Example 1: A Single Microstrip Line

Fig. 3 shows a single microstrip of zero thickness on a
dielectric substrate above a ground plane The character-
istic impedance Z, of the microstrip is Zy = 1/(vovCCy),
where v, is the speed of light in free space, C is the ca-
pacitance of the microstrip and C, is the free space ca-
pacitance of the microstrip. For various w /A ratios, Table
II compares our results for Z, with those of [4], [5]. Our
results were obtained by using 3 pipes, i.e., the matrix
size is 3 X 3, except for the case of w/h = 10 where 8
pipes were required for the given accuracy. In [4], the
matrix size was 42 X 42.

To show the convergence of our results, Fig. 4 plots
the percentage difference in the microstrip characteristic
impedance Z, between our results and those of [15], ver-
sus the number of pipes N. In our calculations, the com-
puter time for the 8-pipe model is less than 6 s on a CSS-
386 personal computer. It is seen in Fig. 4 that when the
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Fig. 3. Single microstrip line.

TABLE I
CHARACTERISTIC IMPEDANCE Z; IN OHMS FOR A SINGLE MIcrosTriP LINE (FIG. 3)
e, = 6.0 e =98
Our Reference % Difference Reference Our Reference % Difference
w/h Results 4] from [4] 5] Results [15] from [15]
0.4 90.40 92.28 —-2.08 89.91 72.35 72.37 —0.03
0.7 72.78 73.96 ~1.62 72.00 58.36 58.39 —0.05
1.0 61.88 62.81 —-1.50 60.97 49.37 49.37 0.00
2.0 42.49 43.00 —-1.20 41.51 33.59 33.60 -0.01
4.0 26.46 26.97 -1.93 26.03 20.94 20.92 0.09
10.0 12.64 13.00 —2.84 12.49 10.00 10.01 0.10
1.0 : - go w s W
o 08
Q k £,=9.8 h
5 0.6 4 essse W/h=4-0
S 1 ooooo w/h:lO_O ] ] o
‘2 0-4 1 Fig. 5. Two tightly coupled microstrip lines.
= )
= 0.2 o
Q b ® . * ] L ] | |
-0.0 . .
@ o IV compares our results of capacitance and inductance
o p p
- =027 matrices with those of [4]. It can be seen that there are
0 -04 smaller relative differences between self capacitances than
5o 6 i between mutual capacitances. In our calculations, 3 pipes
a¥ were used on each strip, and the overall matrix size is 6
087 X 6. In [4], the matrix size was 92 X 92.
-1.0 T T T T T T 1
1 2 3 4 5 6 7 8

Number of Pipes

Fig. 4. Convergence of the multi-pipe model for a single microstrip line.

number of pipes is increased from 2 to 8, the percentage
difference converges, by 3 pipes for w/h = 4 and by 7
pipes for w/h = 10.

Example 2: Tightly Coupled Microstrip Lines

Fig. 5 shows two coupled microstrips of zero thickness
on a dielectric substrate above a ground plane. For var-
ious s /h ratios, Table III compares our results for Eeff, even
and ¢ oqg With those of [15]. Our results were obtained
by using 5 pipes on each strip, i.e., the matrix size is 10
X 10. It is emphasized again that the pipe radii do not
change in this tightly coupled situation. It is the pipe
weighting coefficients, i.e., the amount of charge on each
pipe, that were adjusted using the moment method to take
into account the tight coupling.

Example 3: Two Strips Between Two Ground Planes

Fig. 6 shows two infinitely thin strips between two
ground planes separated by distance 4. The left hand strip
is conductor 1, the right hand strip is conductor 2. Table

Example 4: Three Strips in Three Different Dielectrics

Fig. 7 shows three infinitely thin strips embedded in a
three-layered dielectric between two ground planes. The
left hand strip is conductor 1, the right hand strip is con-
ductor 2, and the center strip is conductor 3. Table V
compares our results of capacitance and inductance ma-
trices with those of [4]. In our calculations, 3 pipes were
used on each strip, and the overall matrix size is 9 X 9.
In [4], the matrix size was 170 X 170. Again large per-
centage differences show up in the mutual elements with
small values.

Example 5: Six Strips on a Dielectric Substrate Above a
Ground Plane

Fig. 8 shows a six-strip transmission line geometry. The
strips are numbered from left to right as 1 to 6. Table VI
compares our capacitance matrix results with those of [7],
[10]. We specifically checked those capacitances in which
the moment method of [7] and the finite element method
of [10] give significant differences. It turned out that our
results consistently agree with those given by [7]. It is
concluded that the HOABC-FEM (high order approxi-
mate boundary conditions in finite element method) of
[10] gave errors in this example. In our calculations, 3
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TABLE HI

EFFECTIVE PERMITTIVITY (¢ ) FOR EVEN AND ODD MODES OF TWO TIGHTLY COUPLED MICROSTRIP LINES,
¢ = 9.8, w/h = 1.0 (FiG. 5)

Even Mode 0Odd Mode
Our Reference % Difference Our Reference % Difference

s/h Results [15] from [15] Results [15] from [15]}
0.05 7.047 7.054 -0.099 5.539 5.542 —0.054
0.1 7.064 7.071 —-0.099 5.565 5.571 —0.108
0.2 7.093 7.100 -0.099 5.607 5.615 —0.143
0.4 7.132 7.1490 —-0.112 5.679 5.687 —0.141
0.6 7.154 7.161 —0.097 5.808 5.817 —0.155
1.0 7.125 7.128 —-0.042 5.923 5.931 —0.136
2.0 7.011 7.003 0.114 6.110 6.111 -0.016

] 956,
3 (length in mils)
5 - 3
e 2
W 1.0 ] s—————— —-0‘5
Fig. 6. Two strips between two ground planes.
TABLE IV
COMPARISON OF RESULTS FOR TwO STRIPS BETWEEN TwO GROUND PLANES (FiG. 6),
(CAPACITANCE IN pF/m, INDUCTANCE IN nH /m)
3 (mils) 5 (mils)
Our Reference % Our Reference %

h Results [4] Difference Results [4] Difference
C, 531.9 533.6 -0.32 481.2 485.2 -0.83
Cis —10.096 —-9.250 9.15 —1.899 —-1.798 5.62
Cyy 778.9 783.4 -0.58 751.1 755.7 -0.61
Ly, 198.7 203.3 -2.32 219.8 224.6 -2.18
L, 2.568 2.401 6.96 5.473 5.345 2.39
Ly, 135.7 139.0 —2.43 140.9 144.2 -2.34

los 608, 02
A
(length in mils) 0.3 95 045
\
0.2
{ ) 42 & 035
| | -
-8 3-2 23 8 o
Fig. 7. Three strips in three different dielectric layers encased by two
ground planes.
TABLE V
COMPARISON OF RESULTS FOR THREE STRIPS IN A THREE-LAYERED DIELECTRIC (FIG. 7);
(CAPACITANCE IN pF /m, INDUCTANCE IN nH /m)
Cy L,
Our Reference % Our Reference %
i j Results [4] Difference Results [4] Difference
1 1 511.8 490.0 4.49 139.9 145.6 —4.07
1 2 -0.5916 -0.5737 3.12 5.912 5.630 5.01
1 3 —-69.75 -064.57 8.02 28.62 28.44 0.63
2 2 257.2 245.9 4.50 215.7 224.0 -3.85
2 3 —66.56 -61.38 8.44 58.14 57.62 0.90
3 3 297.8 286.5 3.94 295.3 306.5 -3.79

633
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six identical strips

w=], s=1 (length in mils) s
0

.

)

Fig. 8. Six strips on a dielectric substrate above a ground plane.

TABLE VI
COMPARISON OF RESULTS FOR A SIX-STRIP TRANSMISSION LINE STRUCTURE (FIG. 8),
(CAPACITANCE IN pF /m)

C,
%
Our Results Reference [7] Difference Reference [10]

i J (MoM) (MoM) from {7] (FEM)
1 I 67.0 66.8 —0.30 66.7
1 2 —28.0 -27.9 0.36 -29.3
1 3 ~5.47 —-5.49 -0.37 -5.65
1 4 -2.05 ~2.08 -1.50 -1.92
1 5 —0.964 —0.999 —3.63 -0.792
1 6 —0.647 —0.704 —8.81 —0.445
2 5 —-1.71 -1.73 ~1.17 —1.55
3 3 79.6 79.4 0.25 81.2
3 6 -2.05 —2.08 —1.46 ~1.92
4 5 ~25.7 -25.6 0.39 ~26.9
6 2 —0.964 ~0.999 —3.63 -0.792

& h

) )
& r

c

: ol

Fig. 9. Broadside coupled suspended stripline.

TABLE VII
COMPARISON OF THE EFFECTIVE DIELECTRIC CONSTANTS FOR BROADSIDE COUPLED SUSPENDED STRIPLINES,
d/b = 0.3 (Fig. 9)

0Odd Mode Even Mode
Our Resuits  ‘Reference [16] % Our Results Reference [16] %
w/b c/w— » c/w = 40 Difference c/w— o c/w =40 Difference
0.1 1.300 1.303 -0.23 1.713 1.701 0.71
0.2 1.253 1.255 —-0.16 1.744 1.732 0.69
0.4 1.197 1.198 -0.08 1.779 1.769 0.56
0.8 1.136 1.138 -0.18 1.811 1.803 0.44
1.5 1.089 1.088 0.09 1.842 1.825 0.93

pipes were used on each strip, and the overall matrix size
is 18 X 18. The terms with the largest difference from [7]
are again those mutual capacitances with the smallest val-
ues and thus are expected to have the largest differences.

Example 6: Broadside Coupled Suspended Striplines

Fig. 9 shows a broadside coupled suspended stripline.
In this example, we first calculate the capacitance and in-
ductance matrices, [C] and [L], and then find the eigen-
values of the matrix [LC]. These two eigenvalues corre-
spond to the odd mode and even mode propagation

constants, respectively. Table VII compares our results
with those of [16] for the case d/b = 0.3. In our calcu-
lations, 5 pipes were used on each strip, and the overall
matrix size is 10 X 10. In [16], there are side walls with
¢/w = 40. In our calculations we took ¢/w — oo. The
difference in the odd mode is always less than 0.25%.
This is due to the fact that the odd mode cannot see the
far walls of [16] and therefore the results will compare
well. For the even mode the error is still always less than
1%, but it is consistently positive, indicating that there
might be some effect of the walls in the results of [16].
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TABLE VIII
SPECTRAL FUNCTION F () FOR DIFFERENT SOURCE AND FIELD LOCATIONS

Source and field

(L-r)A-rpe-7!

in the same | i=2 im=3
di . - vy’ 2y’ -k,) 2y’ ~hy ~h
ielectric layer ¢ ry=e r, =Ry 20y’ -y r,=Re 24y’ ~hy ~hy)
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V. CONCLUSION

In this paper, a multipipe model is presented for cal-
culating the capacitance and inductance matrices of mul-
tistrip transmission lines in multilayer dielectric media.
The multipipe model is derived from the Gauss—Che-
byshev quadrature integration. It has been shown that for
solving multi-strip transmission line probiems, the matrix
size using the multipipe model is an order of magnitude
smaller than that using pulse basis functions in the mo-
ment method [1], [4]. Isolated and tightly coupled trans-
mission lines printed on single layer substrates or embed-
ded in multilayer dielectrics are tested. In all the

examples, our results are in good agreement with pub-
lished data.

The multipipe model is not limited to electrostatic
problems. It can also be used in the full wave analyses of
3-D microwave integrated circuits [14], [17]. However,
the multipipe model is efficient only for solving thin con-
ducting strip problems. For transmission line conductions
of arbitrary cross section, the efficiency may deteriorate.

APPENDIX

The spectral function F(y, y, ¥') is derived for each
situation in Table VIII. Only six situations of the source
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and field locations are listed in Table VIII. For the other
three cases, ie., ( =2,j=1),( =3,j=2)and ( =
3,j = 1), one can use the same spatial Green’s functions
asthecasesof i = 1,j=2),(=2,j=3)and (i = 1,
J = 3) respectively, by using reciprocity.
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